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Abstract. In this article, we outline necessary backgrounds, main definitions, basic

results, and some recent progress, in the theory of higher Koszul algebras and modules.

Koszuality has been introduced by Priddy [Pr]. It reflects a fundamental feature of graded

objects of study. Koszul duality developed by Beilinson, Ginzburg and Soergel [BGS] reveals

the relations between a Koszul algebra and its quadratic dual, not only in the level of the

algebraic structures, but also in the one of their derived categories.

Ten years ago, higher Koszulity was introduced by Berger [Ber1] in the connected case,

and by Green et al. [GMMZ] in the nonconnected case. In the recent development, it turns

out to be important, for example in the representation theory of algebras, noncommutative

geometry, Artin-Schelter algebras, Calabi-Yau algebras, and Yang-Mills algebras (see e.g.

[Ber1], [Ber3], [BD], [BT], [Boc], [CD], [EP], [GMMZ], [LPWZ], [MS1], [V2]).

The aim of this article is to outline basic results and some recent progress, especially

some contributions by Chinese mathematicians, in the theory of higher Koszul algebras and

modules. For the convenience of the reader, we also include necessary preliminaries and

backgrounds, the main definitions, remarks and questions in this direction.
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1. Preliminaries

Throughout Λ is a standardly graded algebra over a field k ([GMV]), i.e., Λ = Λ0 ⊕
Λ1 ⊕ · · · is a positively graded k-algebra satisfying

(i) Λ0 = kr for some integer r ≥ 1;

(ii) dimk Λi <∞, ∀ i ≥ 0; and
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(iii) ΛiΛj = Λi+j , ∀ i, j ≥ 0.

A graded left Λ-module M is a left Λ-module with a decomposition of k-spaces M =⊕
i∈ZMi such that ΛiMj ⊆ Mi+j , ∀ i, j ∈ Z. For graded Λ-modules M and N , a Λ-

morphism f : M → N is a graded morphism if f(Mi) ⊆ Ni, ∀ i ∈ Z. Let Mod(Λ)

be the category of left Λ-modules, and Gr(Λ) the category of left graded Λ-modules and

graded morphisms. They are both abelian categories. Let mod(Λ) (resp. gr(Λ)) be the

full subcategory of Mod(Λ) (resp. Gr(Λ)) consisting of finitely generated Λ-modules. They

are both abelian categories if Λ is noetherian. Thus, for example, gr(Λe) is the category

of finitely generated graded Λ-Λ-bimodules, here Λop is the opposite algebra of Λ, and

Λe = Λ⊗k Λop is the enveloping algebra of Λ.

Let S be a subset of Z. A graded Λ-module M is generated in degrees in S if

M = Λ(
⊕

s∈SMs); M is generated in degree s if M = ΛMs; M is supported above

degree n if Mj = 0 for j < n; M is bounded below if M is supported above degree n

for some n; and M is concentrated in degrees in S if Mi = 0 for i /∈ S; and finally, M

is locally finite if dimk(Mi) < ∞ for all i ∈ Z. For each n ∈ Z, the shift functor (n) on

Gr(Λ) is defined by M(n)i = Mi−n for M ∈ Gr(Λ).

The regular module ΛΛ is a projective object in Gr(Λ) and in gr(Λ); and conversely, any

projective object in Gr(Λ) and in gr(Λ) is a direct summand of a direct sum
⊕

s∈S Λ(ns),

here S is an index set and ns ∈ Z for each s. The graded Jacobson radical J(Λ) of Λ

is the ideal
⊕

i≥0 Λi. The trivial Λ-module Λ0 = Λ/J(Λ) is a graded semi-simple Λ-module

concentrated in degree 0.

Denote by E(Λ) the Ext-algebra
⊕

i>0 ExtiΛ(Λ0,Λ0) which is positively graded, with

multiplication given by the Yoneda product. Consider the even Ext-algebra Eev(Λ) :=⊕
i>0 Ext2i

Λ (Λ0,Λ0) which is again positively graded with grading Eev(Λ)i := Ext2i
Λ (Λ0,Λ0).

For M ∈ Gr(Λ), let E (M) be the graded E(Λ)-module
⊕

i>0 ExtiΛ(M,Λ0), with action given

by the Yoneda product. Consider also the even Ext-module E ev(M) :=
⊕

i>0 Ext2i
Λ (M,Λ0),

and the odd Ext-module E odd(M) :=
⊕

i>0 Ext2i+1
Λ (M,Λ0), which are graded Eev(Λ)-

modules with gradings

E ev(M)i := Ext2i
Λ (M,Λ0), and E odd(M)i := Ext2i+1

Λ (M,Λ0), ∀ i ≥ 0.

Let M ∈ Gr(Λ) be bounded below. Consider J(M) = J(Λ)M = Λ1M , the radical

of M . Since the identity of Λ is in Λ0, we have J(M) 6= M for M 6= 0. For i ∈ Z, let

Mi = Ti ⊕ Λ1Mi−1 be a decomposition of k-spaces. Then Λ⊗k Ti is a projective Λ-module

generated in degree 0. Put PM =
⊕

i∈Z(Λ ⊗k Ti)(i). Then the epimorphism π : PM � M ,

given by the action of Λ on M , is a projective cover of M in Gr(Λ) in the sense that π is

a direct summand of any other graded epimorphism from a graded projective Λ-module to

M . This shows that if M ∈ Gr(Λ) is bounded below (in particular, if M ∈ gr(Λ)), then M

admits a minimal graded projective resolution

Q• : · · · −→ Q2 −→ Q1 −→ Q0 −→M,(1)
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where each Qi is bounded below. If each Qi is finitely generated, then we say that M admits

a finitely generated graded projective resolution.

Let GHomΛ and GExtiΛ denote the morphisms and extensions in Gr(Λ), as opposed to

the usual HomΛ and ExtiΛ in Mod(Λ). For any M ∈ gr(Λ), then for each N ∈ Gr(Λ) we

have

HomΛ(M,N) =
⊕
n∈Z

GHomΛ(M,N(n)),

i.e., HomΛ(M,N) becomes a Z-graded k-space with shift grading

HomΛ(M,N)i = GHomΛ(M,N(i)), ∀ N ∈ Gr(Λ).

Moreover, if M admits a finitely generated graded projective resolution, then for each N ∈
Gr(Λ) and each i ≥ 0 we have

ExtiΛ(M,N) =
⊕
n∈Z

GExtiΛ(M,N(n)),

i.e., ExtiΛ(M,N) becomes a Z-graded k-space with ExtiΛ(M,N)n = GExtiΛ(M,N(n)). In

particular, E (M), Eev(M) and Eodd(M) are all bigraded k-spaces and the Yoneda product

is always bigraded.

2. Higher Koszulity

The following is one of the central notion in this article.

Definition 2.1. Let Λ be a standardly graded algebra, and d ≥ 2 an integer. A finitely

generated graded Λ-module M is a d-Koszul module if M admits a graded projective

resolution (1) such that each Qi is generated in degree δ(i), where

δ(i) :=

{
nd, if i = 2n,

nd+ 1, if i = 2n+ 1.

If the trivial Λ-module Λ0 is a d-Koszul module, then we call Λ a d-Koszul algebra.

If d = 2 then the d-Koszulity is exactly the (classical) Koszulity introduced in [Pr]. For

the theory of Koszulity we also refer to [BGS] and [GMV]. This notion of d-Koszul module

is introduced in [Ber1], where Λ is connected in the sense that Λ0 = k; and the same notion

in general case, is introduced independently in [GMMZ] (however, it is published later for

some reasons).

Remark 2.2. (i) If M is a d-Koszul module, then a graded projective resolution Q• of M

is unique up to isomorphism (see [BGS], p.476), and each Qi in (1) is finitely generated:

this is important for the application of the shift grading on ExtnΛ(M,−).

(ii) If M is a d-Koszul module, then a graded projective resolution Q• of M is minimal,

and each syzygy Ωi(M) is a graded Λ-module finitely generated in degree δ(i). In particular,

M is finitely generated in degree 0.
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(iii) A finitely generated graded Λ-module M is d-Koszul if and only if E 2n(M) is con-

centrated in degree nd, and E 2n+1(M) is concentrated in degree nd+ 1 for each n ≥ 0, both

with the shift grading.

Let Q• be a minimal graded projective resolution of M = Λ0. A direct calculation

shows that TorΛ
i (Λ0,Λ0) ∼= Qi/J(Qi). Thus we have the following equivalent definition for

d-Koszul algebras, which is exactly the one used in [Ber1, Definition 2.10].

Proposition 2.3. A standardly graded algebra Λ is d-Koszul if and only if TorΛ
i (Λ0,Λ0) is

concentrated in degree i for each i ≥ 0.

Since TorΛ
i (Λ0,Λ0) is left-right symmetric, we have (see [YZ1]).

Proposition 2.4. A standardly graded algebra Λ is d-Koszul if and only if so is Λop.

3. Higher Koszul complexes

Let Λ = Λ0 ⊕ Λ1 ⊕ Λ2 ⊕ · · · be a standardly graded algebra. Then we have the tensor

algebra TΛ0(Λ1) = Λ0 ⊕ Λ1 ⊕ Λ⊗2
1 ⊕ · · · , and Λ ∼= TΛ0(Λ1)/I for some homogeneous ideal

I, where ⊗ = ⊗Λ0
. Set Id = I ∩ Λ⊗d1 . If I = 〈Id〉 for some d ≥ 2, then we call Λ a

d-homogeneous.

Lemma 3.1. Λ is d-homogeneous if and only if Ext2
Λ(Λ0,Λ0) is concentrated in degree d.

An easy consequence is that a d-Koszul algebra is always d-homogeneous. The converse is

not true in general. Let Λ ∼= TΛ0
(Λ1)/I be a d-homogeneous algebra and R = Id. Construct

the (left) d-Koszul complex

K• : · · · −→ K2 d2−→ K1 d1−→ K0 π−→ Λ0 −→ 0

of Λ as follows. Put K0
0 = Λ0, K1

1 = Λ1, and for i ≥ 2,

Ki
δ(i) =

⋂
0≤s≤δ(i)−d

Λ⊗s1

⊗
R
⊗

Λ
⊗δ(i)−d−s
1 .

Then Ki = Λ⊗Ki
δ(i) is a projective module which is generated in degree δ(i), where δ(i) is

as in Definition 2.1. The differential map di : Ki → Ki−1 is given by

d2n(a⊗ (a1 ⊗ · · · ⊗ and)) = aa1 · · · ad−1 ⊗ (ad ⊗ · · · ⊗ and), n ≥ 1

and

d2n+1(a⊗ (a1 ⊗ · · · ⊗ and+1)) = aa1 ⊗ (a2 ⊗ · · · ⊗ and+1), n ≥ 0.

The following fundamental result of d-Koszul algebras is proved in [Ber1] for the connected

case, and in [GMMZ] for the nonconnected case.

Theorem 3.2. Let d ≥ 2 be an integer and Λ a d-homogeneous algebra. Then Λ is d-Koszul

if and only if the d-Koszul complex of Λ is a minimal graded projective resolution of Λ0.
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The “if” part is obvious and for the “only if” part, one uses the following lemma ([GMMZ,

Lemma 8.1]).

Lemma 3.3. Keeping the above notation. If Λ is d-Koszul, then for any 1 ≤ n ≤ d− 1,

(Λ⊗n1 ⊗R)
⋂

(R⊗ Λ⊗n1 ) =
⋂

0≤s≤n

Λ⊗s1 ⊗R⊗ Λ⊗n−s1 .

We can also construct a d-Koszul complex B• = (Bi, bi) of bimodules for a d-homogeneous

algebra Λ as follows. Set Bi = Λ⊗Ki
δ(i)⊗Λ. Thus B0 = Λ⊗Λ and B1 = Λ⊗Λ1⊗Λ. The

differential bi : Bi → Bi−1 is given by

b2n(a⊗ (a1 ⊗ · · · ⊗ and)⊗ a′)

=
∑

1≤s≤d

aa1 · · · as−1 ⊗ (as ⊗ · · · ⊗ as+(n−1)d)⊗ as+(n−1)d+1 · · · anda′,

and

b2n+1(a⊗ (a1 ⊗ · · · ⊗ and+1)⊗ a′)

=aa1 ⊗ (a2 ⊗ · · · ⊗ and+1)⊗ a′ − a⊗ (a1 ⊗ a2 ⊗ · · · ⊗ and)⊗ and+1a
′.

This construction appear first in [Ber1, Section 5], and in [Y, Section 2.4] for the noncon-

nected case. The original form given in [Ber1] is not correct, and an erratum is made later

by Berger himself.

Now we have another characterization for d-Koszulity by using d-Koszul bimodule com-

plex. Compare to Theorem 2.3 in [XX], where a different argument by using homotopy of

complexes is given.

Theorem 3.4. ([Ber1, Theorem 5.6], [Y, Theorem 2.4.2]) A d-homogeneous algebra Λ is

d-Koszul if and only if the d-Koszul bimodule complex B• combined with the multiplication

map Λ⊗ Λ � Λ is a minimal projective resolution of Λ in the category gr(Λe).

An immediate consequence is that for a d-Koszul algebra, the Hochschild homology di-

mension coincides with the global dimension, see for example [Ber2] and [BM, Theorem 4.5].

One may also use the Koszul complex of bimodules to compute the Hochschild homology and

cohomology. In [Ber1, Section 1], the Hochschild homology of a connected d-Koszul algebra

whose relations are given by the anti-symmetrizers of degree d is computed. Marconnet

[M1, M2] computed the Hochschild homology of cubic AS-regular algebras. Another result

worthy mentioning is that the multiplication of Hochschild cohomology rings of a d-Koszul

algebra is given explicitly by Xu and Xiang [XX, Theorem 3.2].

4. Hilbert and Poincaré series

Let Λ be a standardly graded algebra with Λ0 = kr, 1 = e1 + · · · + er the identity,

and Si the graded simple module corresponding to ei. For l ≥ 0, let H l be the r × r

matrix with entries H l
ij = dimk(eiΛlej). The Hilbert series of Λ is the r × r matrix
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H(Λ, x) = H0 + H1x + H2x2 + · · · , with entries in Z[[x]]. Then H(Λ, x) is invertible, and

the inverse is the Poincaré series of Λ, which is denoted by P (Λ, x).

Theorem 4.1. ([W, Theorem 1.5]) One has

P (Λ, x)ij =
∑
u≥0

∑
v≥0

(−1)v dimk(GExtvΛ(Si, Sj(u)))xu.

In [W] Λ is required to be either finite-dimensional, or of finite global dimension. We

point out that the argument there works also for a standardly graded algebra. One way

to see this is to regard the Grothendieck group of gr(Λ) as a Z[[x]]-module. It has two

natural bases: one consists of the isoclasses of simple modules, and another consists of the

isoclasses of indecomposable projective modules. Roughly speaking, the Hilbert series and

the Poincaré series are nothing but the transformation matrices between these two bases.

One can define the Hilbert series of a graded module in the similar way. Let M ∈ Gr(Λ)

be supported above degree 0 and locally finite. The Hilbert series H(Λ,M, x) of M is by

definition the column vector with r-entries in Z[[x]] given by

H(Λ,M, x)i =
∑
u≥0

dimk(eiM)xu.

The Poincaré series P (Λ,M, x) of M is the row vector with r-entries in Z[[x]] given by

P (Λ,M, x)j =
∑
u≥0

∑
v≥0

(−1)v dimk(GExtvΛ(M,Sj(u)))xu.

We have the following connection between the Poincaré series and the Hilbert series.

Proposition 4.2. Let Λ be a standardly graded algebra and M ∈ Gr(Λ) be supported above

degree 0 and locally finite. Then H(Λ,M, x) = H(Λ, x)P (Λ,M, x).

Note that H(Λ, Si, x) is the i-th row of the identity matrix. It follows that the propo-

sition above generalizes Theorem 3.1. As an application, we get the following numerical

characterization for d-Koszulity.

Theorem 4.3. Let Λ be a d-homogeneous algebra and M ∈ gr0(Λ). Then M is d-Koszul if

and only if

P (Λ,M, x)j =
∑
v≥0

(−1)v dimk ExtvΛ(M,Sj)x
δ(v),

where δ(v) is as in Definition 2.1.

In particular, Λ is a d-Koszul algebra if and only if

P (Λ, x)ij =
∑
v≥0

(−1)v dimk ExtvΛ(Si, Sj)x
δ(v).

The proof is similar to the one for Koszulity in [BGS, Theorem 2.11.1], see Theorem 1.4.2

in [Y], or [Kr, Theorem 3.2].
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We remark that one can also define certain Grothendieck ring valued Hilbert series for

Koszul algebras, which is used by Hai and Lorenz [HL] to prove the MacMahon Master

Theorem. The idea is as follows.

For simplicity, we assume at this moment that Λ is a connected Koszul algebra. Let H be

a bialgebra over k, then one has the tensor product of two H-modules via comultiplication,

and hence the Grothendieck group of mod(H), denoted by K, is a ring with multiplication

given by the tensor product. Assume that Λi and Ki
i are H-modules for each i ≥ 0, and

all the differential maps Λ ⊗Ki
i → Λ ⊗Ki−1

i−1 are H-morphisms, where Ki is as in Section

3. Define the K-valued Hilbert series of Λ by H(Λ,K, x) =
∑
i≥0[Λi]x

i ∈ K[[x]], and the

K-valued Poincaré series by P (Λ,K, x) =
∑
i≥0[Ki

i ]x
i, where [Λi] and [Ki

i ] denote the

corresponding elements in K. Then we also have H(Λ,K, x)P (Λ,K,−x) = 1. Taking H = k

we obtain the Hilbert and the Poincaré series for Koszul algebras.

This kind of Hilbert series works for general homogeneous algebras under some mild

conditions. In fact, Etingof and Pak [EP] applied this idea to d-Koszul algebras to obtain

certain generalized MacMahon Master Theorem (see also [KP]). More recently, Hai, Kriegk

and Lorenz [HKL] applied this kind of Hilbert series to a N -homogeneous superalgebra as

well.

5. Dual algebras and Ext-algebras

Let Λ = TΛ0
(Λ1)/I be a d-homogeneous algebra and R = I ∩Λ⊗d1 . For M,N ∈ mod(Λe0),

the dual space M∗ = Homk(M,k) is naturally a Λ0-Λ0-bimodule; and (M⊗N)∗ is naturally

identified with N∗ ⊗M∗ via (g ⊗ f)(m ⊗ n) = f(m)g(n) for f ∈ M∗, g ∈ N∗,m ∈ M and

n ∈ N . Thus (Λ⊗n1 )∗ is identified with (Λ∗1)⊗n, ∀ n ≥ 0. Set R⊥ = {f ∈ (Λ∗1)⊗d | f(r) =

0,∀ r ∈ R}. The dual algebra of Λ, denoted by Λ!, is by definition TΛ0
(Λ∗1)/〈R⊥〉. Then

(R⊥)⊥ = R if we identify ((Λ⊗n1 )∗)∗ with Λ⊗n1 via the evaluation map, and (Λ!)! ∼= Λ.

Let d ≥ 2 be an integer. Put D = dN∪ (dN + 1). By definition ΛD is a positively graded

algebra with (ΛD)i = Λδ(i) for all i ≥ 0, where δ(i) is as in Definition 2.1. Note that if d = 2

then ΛD = Λ. We may define a modified Poincaré series H(ΛD,−1, x) of Λ by setting

H(ΛD,−1, x)ij =
∑
v≥0

(−1)v dimk(eiΛvej)x
δ(v).

Note that for a Koszul algebra Λ, E(Λ) is again Koszul and E(Λ) ∼= (Λ!)op; and hence

E(E(Λ)) ∼= Λ. See [BGS], Theorems 2.10.1 and 2.10.2. This is what Koszul duality means in

the level of algebraic structures. For higher Koszulity the situation seems to be not yet well

understood, and is worthwhile to be studied (one may look at [Ber1] and [MM] for some

related information). However, we have the following characterization of d-Koszulity, see

[GMMZ, Section 9], or [BM, Proposition 3.1].

Theorem 5.1. Keep the above notation. Then a d-homogeneous algebra Λ is d-Koszul if

and only if E(Λ) ∼= (Λ!
D)op as graded algebras, where Λ!

D is the positively graded algebra with

grading (Λ!
D)i = Λ!

δ(i) for i ≥ 0.



8 Y.YE, P.ZHANG

Together with Theorem 4.3, we have the following consequence.

Corollary 5.2. Let Λ be a d-Koszul algebra. Then H(Λ, x)H(Λ!
D,−1, x) = In.

This is a generalization of the quadratic case in [BGS, Lemma 2.11.1]. The converse

statement of the corollary is not true, even in the quadratic case. Counterexamples can be

found in [Pos2] and [Pion].

Another important consequence is that the Ext-algebra of a d-Koszul algebra is finitely

generated. A classical result says that a quadratic algebra is Koszul if and only if its Ext-

algebra is generated in degrees 0 and 1, see for example [Lö]. We have the following

Theorem 5.3. ([GMMZ, Theorem 4.1]) Let Λ be a d-homogeneous algebra. Then Λ is

d-Koszul if and only if E(Λ) is generated in degrees 0, 1 and 2.

Remark 5.4. It is known that E(Λ) carries a natural A∞ structure, from which we recover

the algebra itself. We refer to [K] and [LPWZ] for the details. Keller showed that a quadratic

algebra Λ is Koszul if and only if the higher (≥ 3) multiplications on E(Λ) are trivial.

He and Lu ([HLu]) introduced the so-called (2, d)-algebras, and used it to characterize the

A∞-structure on the Ext-algebra E(Λ) of a d-Koszul algebra.

6. Generalized d-Koszul modules

An interesting topic is to study possible Koszul strucutres arising from a d-Koszul algebra.

Let Λ be a d-Koszul algebra. Regrading the Ext-algebra E(Λ), we get a new positively graded

algebra Ê(Λ) with Ê(Λ)0 = E(Λ)0, and Ê(Λ)i = E(Λ)2i−1⊕E(Λ)2i for i ≥ 1. Similarly, for a

d-Koszul module M , we define Ê (M) by Ê (M)0 = E (M)0 and Ê (M)i = E (M)2i−1⊕E (M)2i

for i ≥ 1.

Theorem 6.1. ([GMMZ]) Let Λ be a d-Koszul algebra and M a d-Koszul module. Then

(i) Eev(Λ) is a Koszul algebra; and E ev(M) is a Koszul Eev(Λ)-module;

(ii) Ê(Λ) is a Koszul algebra; and Ê (M) is a Koszul Ê(Λ)-module.

An open problem is raised in [GMMZ]: is E odd(M) a Koszul Eev(Λ)-module? Marcos

and Mart́ınez-Villa [MM] showed that the answer is yes if Λ! is also d-Koszul. However, Λ!

is not d-Koszul in general (see [MM], Example 2). Recently, an affirmative answer to this

problem is given by Bian, Ye and Zhang, by introducing the so-called generalized d-Koszul

modules.

Definition 6.2. ([BYZ]) Let Λ be a standardly graded algebra, and d ≥ 2 an integer. A

finitely generated graded Λ-module M is a generalized d-Koszul module if M admits a

graded projective resolution (1) such that each Qi is generated in degrees in ∆(i), where

∆(i) :=

{
nd, if i = 2n,

{nd+ 1, · · · , nd+ d− 1}, if i = 2n+ 1.
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If the trivial Λ-module Λ0 is a generalized d-Koszul module, then we call Λ a general-

ized d-Koszul algebra.

As in d-Koszul case we have

Remark 6.3. (i) A graded projective resolution Q• of a generalized d-Koszul module is

unique up to isomorphism; and each Qi in (1) is finitely generated.

(ii) If M is a generalized d-Koszul module, then a graded projective resolution Q• of

M is minimal, and each syzygy Ωi(M) is a graded Λ-module finitely generated in degrees in

∆(i). In particular, M is finitely generated in degree 0.

(iii) A finitely generated graded Λ-module M is generalized d-Koszul if and only if

E 2n(M) is concentrated in degree nd, and E 2n+1(M) is concentrated in degrees in {nd +

1, · · · , nd+ d− 1} for each n ≥ 0, both with the shift grading.

It is clear that d-Koszul modules M and the shifts of their syzygies (ΩiM)(−δ(i)) are

generalized d-Koszul, where δ(i) is as in Definition 2.1. If M is a generalized d-Koszul Λ-

module, then so is the shift (J i(M))(−i) for each i ≥ 1, where J is the graded Jacobson

radical. Note that a generalized d-Koszul module is not necessarily a d-Koszul module (see

Example 2.3 in [BYZ]). As in the d-Koszul case, we have

Theorem 6.4. ([BYZ]) Let Λ be a d-Koszul algebra, and M a generalized d-Koszul module.

Then E ev(M) is a Koszul Eev(Λ)-module.

Since (ΩM)(−1) is a generalized d-Koszul module, it follows from the above theorem

that Eev((ΩM)(−1)) is a Koszul Eev(Λ)-module. Therefore by the isomorphism Eodd(M) ∼=
Eev(ΩM) = Eev((ΩM)(−1)) we have the following consequence, which affirmatively answers

the open problem mentioned.

Corollary 6.5. ([BYZ]) Let Λ be a d-Koszul algebra, and M a d-Koszul Λ-module. Then

Eodd(M) is a Koszul module over the Koszul algebra Eev(Λ).

We remark that properties of generalized d-Koszul modules are worthwhile to be studied

from various viewpoints, say from the categorical point of view.

7. Lattice Distributivity and Kozulity

Backelin and Fröberg [BF] observe that Koszulity closely links to the lattice distributivity

of subspaces. Let V be a k-vector space and L(V ) the set of all subspaces of V . Ordered

by inclusion, L(V ) is a lattice with the usual intersection ∩ and sum +. The lattice L(V )

is modular in the sense that A + (B ∩ C) = B ∩ (A + C) for A,B,C ∈ L(V ) and A ⊆ B.

A sublattice of L(V ) is a subset of L(V ) which is closed under taking intersections and

sums. The sublattice LS generated by a set S = {A1, · · · , An} of subspaces is the smallest

sublattice containing A1, · · · , An. A lattice L is distributive if A ∩ (B + C) = (A ∩ B) +

(A ∩ C) for A,B,C ∈ L. We include the following useful criterion.
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Lemma 7.1. ([BF]) Let S = {A1, · · · , An} ⊆ L(V ). Then LS is distributive if and only if

there is a basis X of V , such that Ai ∩X is a basis of Ai for each i.

Let Λ = TΛ0
(Λ1)/I be d-homogeneous and R = I ∩ Λ⊗d1 . In the following we will omit

the symbol “⊗”, and write Λ⊗n1 as Λn1 , and Λ1⊗R as Λ1R. Put In = {Λi1RΛn−d−i1 }n−di=0 for

each n ≥ d, and In = I ∩ Λn1 . Clearly I0 = I1 = · · · = Id−1 = 0, and

In =
∑
W∈In

W = RΛn−d1 + Λ1RΛn−d−1
1 + · · ·+ Λn−d1 R

for n ≥ d. Then one has

Theorem 7.2. ([Bac], [BGS]) Keep above notations. Let Λ be a quadratic algebra. Then

Λ is Koszul if and only if for each n ≥ 3, the sublattice Ln of L(Λn1 ) generated by In is

distributive.

The case d ≥ 3 is a little complicated. By Lemma 3.3, if a d-homogeneous algebra Λ is

d-Koszul, then

Λn1R ∩RΛn1 =
⋂

0≤i≤n

Λi1RΛn−i1 , ∀ 1 ≤ n ≤ d− 1, (ol)

and we will call this the overlap condition. In [Ber1] the following extra condition for

a d-homogeneous algebra is introduced:

Λd−1
1 R ∩ (Λd−2

1 RΛ1 + Λd−3
1 RΛ2

1 + · · ·+RΛd−1
1 ) ⊆ Λd−2

1 (RΛ1 ∩ Λ1R). (ec)

The both conditions (ol) and (ec) hold automatically if d = 2. It is well-known that the

condition (ec) implies the condition (ol), and the d-Koszulity implies (ec) and (ol). A d-

homogeneous algebra Λ is said to be distributive if the sublattices Ln are distributive for

all n ≥ d+ 2. In case Λ is distributive, the condition (ec) is equivalent to the condition (ol).

The following result generalizes Backelin’s result.

Theorem 7.3. ([Ber3, Proposition 2.3], [Y, Theorem 2.5.1]) Let Λ be d-homogeneous and

distributive. Then Λ is d-Koszul if and only if the condition (ec) is satisfied, if and only if

the condition (ol) is satisfied.

Remark 7.4. Unlike the quadratic case, it is not known yet whether a d-Koszul algebra is

always a distributive d-Koszul for d ≥ 3, although there is some evidence that this is the

case. Fortunately, most d-Koszul algebras of interest are distributive.

A much more practical condition is Bergman’s X-confluence ([Berg]) with respect to

a basis X of a vector space V . This confluence condition is stronger than distributivity

condition, see for example [Ber1, Theorem 3.11]. An easy example of X-confluence is the

case that all relations are monomial, and hence monomial d-homogeneous algebras are always

distributive, this fact can also be shown by applying Lemma 7.1 directly. We thus have the

equivalence between d-Koszulity and the condition (ol) in this case, see [Ber1, Proposition

3.8], and [YZ2] for the nonconnected case. In fact, we have the following more general result.
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Theorem 7.5. ([YZ2, Theorem 2.1]) Let d ≥ 2 and Λ a monomial d-homogeneous algebra.

Then the following are equivalent:

(i) Λ is d-Koszul;

(ii) Λ satisfies the condition (ol);

(iii) GExt3
Λ(Λ0,Λ0(i)) = 0 unless i = d+ 1;

(iv) Any linearly presented Λ-module is a d-Koszul module.

In the quadratic case, the condition (ol) satisfies automatically and hence all monomial

quadratic algebras are Koszul, which is a classical result on Koszul algebras.

Another example by using X-influence is as follows. Let V be a finite-dimensional k-

space. Let d ≥ 3 and denote by Sd the symmetric group of {1, 2, · · · , d}. Set
∧d

V to be

the k-span of { ∑
σ∈Sd

sgn(σ)aσ(1) ⊗ · · · ⊗ aσ(d) | a1 ⊗ · · · ⊗ ad ∈ V ⊗d
}
.

If the characteristic of k is 0, then TV/〈
∧d

V 〉 is d-Koszul ([Ber1, Theorem 3.13]).

8. More related topics

We survey more related topics with d-Koszul algebras.

8.1. AS-Gorenstein property. An algebra is left Gorenstein if AA is of finite injective

dimension. A connected standardly graded k-algebra Λ is left AS-Gorenstein if the injec-

tive dimension r of ΛΛ is finite, and dimk ExtrΛ(k,Λ) = 1 and dimk ExtiΛ(k,Λ) = 0 for i 6= r.

If in addition, Λ is of finite global dimension D, then Λ is said to be left AS-regular; and

in this case one has D = r. Notice that left AS-regularity implies right AS-regularity ([SZ],

Proposition 3.1). In lower dimensional case, the AS-Gorenstein property links to higher

Koszulity closely.

In fact, let Λ be a AS-regular algebra with global dimension D = 2 or 3. Then Λ is

d-Koszul with d = 2 if D = 2, and d ≥ 2 if D = 3. See [BM, Proposition 5.2]. In the

same work, Berger and Marconnet prove that a Koszul algebra Λ of finite global dimension

is AS-Gorenstein if and only if E(Λ) is Frobenius (see Theorem 5.4 and Corollary 5.12 in

[BM]). Moreover, [BM, Theorem 6.3] claims that for an AS-Gorenstein d-Koszul algebra of

finite global dimension, then there is a Poincaré duality between its Hochschild homology

and cohomology, which relates the Van den Bergh duality [V1, Proposition 2].

Mao and Wu studied the AS-regular property of higher Koszul algebras. Let Λ be a left

Gorenstein d-Koszul algebra which is left Noetherian. Then Λ is AS-regular if and only if it

is d-standard (see [MW, Theorem B] for details).

Dubois-Violette ([D1], [D2]) considered homogeneous algebras defined by multilinear

forms. It was shown that a Gorenstein d-Koszul algebra of finite global dimension is defined

by some multilinear form ([D2], Theorem 5 and Theorem 11). An important example of
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such algebras are Yang-Mills algebras, which are 3-Koszul algebra of global dimension 3 and

are Gorenstein, see [CD].

8.2. PBW deformations. PBW deformations for quadratic algebras are studied by Braver-

man and Gaitsgory in [BrG]. Fløystad and Vatne considered general homogeneous case, and

gave a criteria (the Jacobi condition) for PBW-deformations ([FV], Theorem 1.1). This is

also obtained by Berger and Ginzburg [BG] independently.

In [Pos1], Positselski showed that the PBW deformations of a quadratic Koszul algebra

correspond to the differential graded structures on its Ext-algebra. Inspired by this corre-

spondence, Fløystad and Vatne ([FV, Theorem 2.1]) showed that for a d-Koszul algebra, the

PBW deformations correspond to certain class of A∞ structures on its Ext-algebra.

Cassidy and Shelton ([CS1]) characterized PBW deformations for an graded algebra Λ

by using the notion of central extensions and certain homological constant attached to Λ.

An interesting application is to the study of PBW deformations of certain Calabi-Yau

algebras. It is conjectured by Van den Bergh [V2] that any graded quiver algebra which is

Calabi-Yau of dimension 3 is defined from a super potential. This is proved in the graded

situation by Bocklandt [Boc] (see also [BSW]). A key observation by Berger and Taillefer is

that such algebras are d-Koszul; and they obtain a PBW-deformation Λ′ of a graded quiver

algebra which is Calabi-Yau of dimension 3, and prove that Λ′ is again Calabi-Yau. See

Theorem 1.1 in [BT].

8.3. Generalizations of Koszulity. There are quite a lot of generalizations of Koszulity

from different perspective.

One aspect is to consider graded algebra Λ such that ExtiΛ(Λ0,Λ0) is concentrated in

certain degrees for each i ≥ 0. In this sense, one has the notion of δ-Koszul algebras and

2-d-determined algebras introduced by Green and Marcos [GM1, GM2], piecewise Koszul

algebras by Lü, He and Lu [LHL], and bi-Koszul algebra by Lu and Si [LS1, LS2, S].

Another one is to consider the Ext-algebra. Recall that a quadratic algebra is Koszul

if and only if its Ext-algebra is generated in degrees 0 and 1; and that a d-homogeneous

algebra (d ≥ 2) is d-Koszul if and only if its Ext-algebra is generated in degrees 0, 1 and

2. A graded algebra such that the Ext-algebra is generated in degrees 0, 1 and 2 is called a

K2-algebra in [CS2]; and the Ext-algebra of a K2-algebra may not be K2 ([CPS]).

The Ext-algebra of a δ-Koszul algebra in the sense of [GM1] has also been studied by

various authors. It was asked in [GM1] whether there exists a common bound N , such that

for any δ-Koszul algebra, the Ext-algebra is generated in degrees {0, 1, · · · , N}. Recently

Lü [Lü] gave an negative answer to this question. An example of quadratic δ-Koszul algebra

whose Ext-algebra is exactly generated in two different degrees was given in [C].

8.4. Generalized Koszul Dualality. It is well-known that there exists a Koszul duality

between a Koszul algebra Λ and its Ext-algebra E(Λ) via the quadratic dual, as well as the
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equivalence of bounded derived categories ([BGS]). While for d-Koszul algebras, very little

is known about this, which seems to be of importance and interest. We mention that in

[LPWZ] some results in this direction for non-Koszul case, including d-Koszul algebras, are

discussed by using A∞ algebras.

We have seen in Section 5 that for a d-Koszul algebra Λ, E(Λ) can be obtained from its

dual algebra. In a series work [MS1, MS2, MS3], Mart́ınez-Villa and Saoŕın made an attempt

to connect the module category of a d-Koszul algebra Λ and the one of its Ext-algebra E(Λ).

They showed that there is a subcategory of Gr(E(Λ)) that embeds fully faithfully in the

category of cochain complexes of graded Λ-modules.
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